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The left ventricle (LV) is the largest chamber in the

heart and plays a critical role in cardiac function. Non-

invasive cardiac imaging modalities (e.g., cardiac magnetic

resonance (CMR), transesophageal echocardiography (TEE),

and computed tomography (CT)) are commonly used to study

LV size and function in addition to other cardiac structural

aspects such as valvular disease, and are invaluable tools for

the diagnosis and management of heart disease. However,

the process of analyzing cardiac images is time-consuming

and labor-intensive. Automatic LV segmentation and volume

estimation from cardiac images are thus essential in providing

efficient and consistent analysis.

Deep learning methods have been used for many image

processing tasks with great success, and have also been applied

to medical image analysis in recent years. Most research in

cardiac image analysis uses CMR since this imaging modality

is considered the gold standard for studying heart health. LV

segmentation refers to the task of detecting the LV contour,

especially of the endocardial surface. Volume estimation refers

to estimating the LV cavity volume. LV volumes at end-systole

(ES) and end-diastole (ED) are used to calculate ejection

fraction (EF), an important measure used for diagnostics and

treatment. LV segmentation and volume estimation from CMR

are challenging tasks. Difficulties arise from many sources:

variability in image quality and contrast, anatomical differ-

ences, artifacts from imaging instruments, as well as errors

and variations introduced by the imaging process. The wide-

ranging and challenging nature of these issues is apparent in

the myriad of approaches that have been proposed to address

them. We have experimented with many of these proposed

approaches and compared their effectiveness on publicly avail-

able datasets. Our work offers an analytics pipeline consisting

of the best methods we found for preprocessing, modeling,

and postprocessing cardiac MR images for LV segmentation

and volume estimation using deep learning.

Our approach segments the LV cavity in each short-axis

(SAX) slice, computes the LV area and volume for each slice,
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then sums all per-slice LV volumes to estimate the overall LV

volume. We use a U-Net, a deep learning model originally

created for image segmentation in biomedical applications but

have been applied to other domains as well. In our approach,

a U-Net is trained on the segmentation task by predicting the

LV contour in each input CMR image. The contours are then

used as input to a separate process to calculate the LV volume.

In this volume calculation process, ES and ED frames are

determined in each slice, then summed across all slices to

determine the LV volume for each patient.

We make use of three publicly available data sources: Sun-

nybrook Cardiac Data (SCD), Automated Cardiac Diagnosis

Challenge (ACDC), and Kaggle Second Annual Data Science

Bowl. All three datasets provide 3D MRI cines from patients,

encompassing multiple pathologies. The SCD and ACDC

datasets also provide LV contour labels drawn by experts,

while the Kaggle dataset comes with LV volume labels at

ES and ED. We use the SCD and ACDC datasets to train the

U-Net on the LV segmentation task, and the Kaggle dataset

to test our volume estimation process.

In building our pipeline for LV segmentation and volume es-

timation, we experimented with many methods for preprocess-

ing, segmentation, and volume estimation. For preprocessing,

we tested methods to address variation in image orientation,

contrast normalization, pixel spacing, and pixel variance. We

also used alternative ways to perform ROI (region-of-interest)

detection. For segmentation, we evaluated the effects of image

size; various ways to add data augmentation; different loss

functions; model ensembles; along with the usual model

tuning related to batch normalization, dropout, batch size, and

convolution parameters on the U-Net predictions. For volume

estimation, we incorporated techniques to remove extraneous

predicted contours; determine ED and ES frames in each slice;

and address anomalies such as zero-predictions, patients with

too few slices, and slices out of order.

We discuss findings from our investigation into different

techniques for processing and analyzing CMR images and

present the methods giving best performance in an end-to-end

analytics pipeline for LV segmentation and volume estimation.

This pipeline can serve as an initial step towards analyzing

CMR at scale to aid in non-invasive cardiac disease detection.
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